,Apire'ct'-l\fléthod for Implicit Particle-In-Cell Simulation

We describe a new method for solving the set of coupled particle and field equations arising in
implicit formulations of particle-in-celi plasma simulation. Such impiicit integration schemes
are necessary for the efficient study of low frequency, long wavelength plasma phenomens; in’
particular, it is imporiant to be able to select a time-step which is Tnrger than the plasma pe-
riod when plasma ascillations are not themselves of interest. In addition, it is desirable 1o em-
ploy expressions [or time derivatives which affort selective dnmping of high-frequency modes
while preserving low-frequency behavior. Unlike other methods deseribed recently, the methad
we describe does not involve the introduction of moment equations to advance field quantities
in time. The essence of our.methed is ihe Yisiearization of the charge density at the advanced
limte sbout an approximate density which does nat involve the [ield at the advanced time; this
involves the accumulation of coefficients which are intraduced into the elliptic field equation
to include the effect of the advanced field. Some iliustrntive results are presented. )

I. INTRODUCTION

We have made several advances in the quest for more.efficient siniulation
~gf low-frequency flasma phenomena. The most adaptable and reliable
tools for study of kinetic plasma behavior are the “particle” codes, but the
stability of these codes has previously required resclution of the electron
_plasma period in the time integration, even when the phenomenon under
study took place on the much-longer ion time scale.

. Analogous limitations on time step in other problems, such as heat flow
and chemical rate equations, are overcome through the use of implicit time
integration schemes. In particle codes, although implicit methods have been
analyzed theoretically,' their application has heen inhibited by the very
large number of nonlinear equations to be soived simultaneousty, about
equal to the number of zone guantities (electric and magnetic fields) plus
the much larger number of particle coordinates.

We have begun to experiment with a new method for solution of these
equations in two steps. In this method, equations are first set up for the
felds. Although these equations involve information from the particles, the -
number of equations to solve simultaneously is only the number of field
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quantities, defined on the zones. The resulting matrix equations are sparse
and their solution is convenient with known methods. Once the fields are
known, the particle coordinates can be readily solved for serially, one par-
ticte at a time. Here, we will discuss simulations having only the electro-

“static field.

" - First we consider finite-differenced equations of motion for the particles
which have the necessary stability at large time-step and are accurate for
the low frequency phenomena to be studied. In Ref. 3, a centered expres-
sion for the time derivative is employed. Use of this expression leads to a
numerically stable-algorithm at large wpAt, but by itself does not damp
high frequency components of the motion, which are aliased into the Ny-
quist [requency—stable odd-even oscillations of large amplitude can persist
(as will be sliown in the first example below). Here, wp is the plasma fre-
quency and At is the time step. In Ref. 2, the derivatives are biased usmg a-

scheme to advance positions x and velocities v such as

Vel = Vp = (Ha,,ﬂ + Zﬂﬂ—l)AI, (1a)
bt — X —(iv +1, )At , (1b)
a1 n 4 m1 4 1 ‘ 1 = i

‘where subscripts denote time levels. This scheme damps unwanted high-
frequency oscillations, white low frequencies w <€ At™' are very weakly
. damped, as desired: (Imw)/w = O(wAr)’. Such schemes are members of a
class whose application to plasma simulation has been analyzed in detail in
" Ref. 1. We have also devised a different class of schemes, whose simplest
. member is

212 = Va12) — (Ynoyyz — Vemiz) = dpnAd, - (2a)
Xnt1 — Xn == VpngAl (2b)

- This scheme has the same order of accuracy as Eq. (1), while requiring less

storage of time levels. The presence of the acceleration at only the n -+ 1

time level increases the damping of high-frequency oscillations. The opti-

mum design of these difference equations i5 the first issue in practical im-
plementation of large time-step methods.

~In all implicit schemes the new positions Xnt1 depend on the accelerations
am due to the electric field Eq. But this field is not yet known, as it de-

-pends on the density p.+ of particle positions {x,+1}. The solution of these

coupled particle and field equations is the other major xmplementatlon
issue,
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In the method developed by Denavit® and Mason® for this solution, the
fields at the new time level are predicted by solving coupled field and fluid
equations, in which the kinetic stress tensor is approximately evaluated
from particle velocities known at.the earlier time. After the fields are
known, the particles are advanced to the new time-level, and, if desired, an -
improved kinetic stress tensor is calculated and the process iterated.

It is also practical to predict the future electric field Enr1 quite directly by
means of a linearization of the particle-field equations. This approach may
offer greater economy in storage and compiexity than methods which re-
quire the accumulation of higher velocity moments and the solutlon of
fluid equations for each species. Since this method and its 1mplemcntatlon
in the experimental code BAAL have not been described previously, we
outline the concept here. _

Section II below describes a conceptual (gridless) form of the algorithm
we have developed. Section III briefly describes the cloud-in-cell algorithm
used in our testbed code (BAAL). Section IV presents some illustrative re-
sults, and Section V summarizes this work and presents some possible
avenues for futher study. Further details of this work, more sophisticated
implicit PIC methods, and our analyses of time-differencing algorithms will
be presented in future publications.

II. CONCEPTUAL ALGORITHM

The position x4 of a particle at time level 1,41, as given by an implicit time
integration scheme, can be written as

Xmsl = BAI sy + xn+l: (3)

where 0 < A= < land xi¥ is the position obtamed from the equation of mo-
tion with the acceleration a,:; neglected. Since xih depends only on posi-
tions and accelerations at times 1, and earlier, it is known. In its snmplest
form, the BAAL algorithm is derived by linearization of the particle posi-
tions relative to x!%.

One can regard the actual position, x,,ﬂ, as xi% plus a displacement
8x = BAt’aw. We form a charge density pith from {x{0h}; the actual charge' .
distribution is then pidh, plus the change 8p brought about by displacing
particles by the amount 6x = x;u . — x!¥,. Linearized, this increment to p is'

=~V [ph (x)6x(x)]. ' 0)
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"To the same order of approximation, the displacement 8x(x) of all particles
with x¥, = x is obtained with a., evaluated at x, i.c.,

Sx(x) == BA (g/m)Enn(x). &)
'We then have
8p(x) = =V t()Emil)], ©)
where the effective susceptibility is .
x(x) = ,B[p‘"'l(x)q/ m)ALt = ,Bmp(x)m )]

3 (ratlonallzed cgs units are employed). Note that ¥ depends only on the par-
ticle positions {x"1], and not at all on velocity mformatmn as required in
the moment equation methods.

With these two source contributions, the Poisson equation becomes

Ve By = o —v- (xEu1) - (8)

or

) -V [l + x1Vn1 = pﬂ’:. (%)
This elliptic equation is solved by standard methods, The field —Von and
(5) are then used to calculate the positions {x41]. This algorithm is reminis-
cent of the method for solution for the vector potential 4 in some magneto-
inductive plasma simulation codes

Should it be necessary, we have shown how to refine the approximations
used above by: linearization about a more accurate prediction of Xx1 than
x%,, iteration, and a more accurate evaluation of 8x,

In our spatial-difference representation of these equations, described in
the following section, Eq. (4) becomes the gradient of a zonal p with re-
spect to particle position, and éx in Eq. (5) depends on the electric field in
two zones, using the usual interpdlation. In this way we are assured that

_the density pn of final particle positions {x,.,} satisfies the code’s represen-
tation of the Poisson equation, —Vch,,ﬂ = pns1, SO that desirable features
built into the time-differencing scheme will be realized in practice.

. III. CLOUD-IN-CELL ALGORITHM

The testbed computer simulation program we have developed, BAAL, em-
ploys well-known particle-in-cell techniques to assure a smooth interpola-
tion of the zonal electric field onto the particle locations and of the particle
charge onto the charge-density grid. For simplicity we illustrate the scheme
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with a fully implicit (backward differenced) model algorithm; the actual
code is far more general,

In the model algorithm, each particle k is advanced via
V' = v} (g/m)AE™ (X, (10a)
XE = X+ A (10b)

(time levels will henceforth be denoted by superscripts, particle and cell in-
dices by subscripts). For each cell J, we write the charge density as

I =g/ a0 Y SO — xy), an

where Ax is the cell size and the “shape function” § is the finite-size parti-
cle analogue of the Dirac delta function. The calculation of E™' requires
knowledge of p™"' before we have explicit knowledge of the xJ*'. In essence,
the BAAL algorithm calculates this charge density implicitly by approxi-
mating it as a linear function of £™"'. We compute a simple approximation

i (this is x{2) of the previous section) to xJ*! via

%= xf + Anv], (12)

which for this simple model is just a “free—streaming”'locatio'n. We expand
the shape function in a Taylor series:

S —x) =~ 8@ — ) + (" — % Y35 (R — x)/ %, (13)

and note that the expansion is exact for linear-spline particles which do not
cross cell boundaries as a result of the new acceleration, i.e., which occupy
the same cells at x{*' and %;. We approximate the coefficient of the first-

derivative term via
x — Fe= (g/mArET (1) =~ (@/mAr Y S — x)E',  (14)
- .

with a relative error of order olAr? = gEAtY/mLg <€ 1, where wy is the par-
ticle trapping or bounce frequency and Lg is a typical scale length over
which E varies. This approximation imposes a limitation (shared by the
moment-equation method) on L, and |E] for the simulation to be valid.
Using Eqgs. (11), (13), and (14), the field equation solved is '

—(o = 2] + QIIVAYS = oy + L WGE, - (15)
-
where the “conventional” charge density is

Biteonys = 3 (§/AX)S(x — x7), (16)
k _ .

N



and the “weights” ¥y couple each cell to its neighbors when part-icles are
present: '

Wy = (A /mAx) Y S (ke — x)8S (& — i)/ 8% (17
3

For linear splines Wy = 0 whenever |i — j| > 1 so the matrix equation re-
mains sparse. Since for linear splines d5/8%, = £1/Ax {or zero), there is
considerable redundancy in the calculation of the pyiconv) and the 7, and it
turns out that (at least for the unmagnetized 1d electrostatic code) the
number of operations needed to weight all necessary quantities to the grid

“is the same as the number needed in the conventional electrostatic code.
Since the field interpolation and charge deposition steps tend to dominate
the particle processing time on a vector computer like the Cray-1, the algo-
rithm is potentially very efficient.

The field equation is written in terms of the electrostatic potential ¢, and
yields a pentadiagonal linear system plus corner elements arising from the
periedic boundary conditions, This system is solved by direct Gaussian in-
version, which is straightforward in one dimension but nontrivial to gener-
alize to higher dimensional or electromagnetic problems. We have also
solved the field equations by successive overrelaxation, with observed con-
vergence ranging from rapid to very slow depending upon the problem (the
diagonal dominance of the matrix is sometimes inadequate). An ad hoc spa-

tial filtering is provided for through use of a fast Fourier transform applied
either to p and ¥ (i.e., W) before the field solution or to ¢ afterward; un-
like the explicit case, it is not equ:valent to filter the input or output of

“'the field equation, sinck the effect of the spatially varying y is to couple -
modes of various wavelengths. We are experimenting with means of apply-
ing spatial filtering within the field equation itself.

" 1V. -CODE RESULTS

As a first check of code performance, we initialized a cold electron plasma ‘
{with immobile ions) in a run with parameters wp = 1.0, At = 10.0 (run
“CL27"). For this run, the BAAL testbed used a time-centered trapezoidal
rule (centered implicit) version of the model difference scheme deseribed in
this section. Thirty-two cells, and 128 particles, were employed, and there
was an initial excitation of mode 1 (the longest wavelength mode). The -
energy in this mode, when plotted as a function of time, exhibits an un-
damped oscillation with a period of 160. More detailed diagnostics show
that the mode is in fact nearly an odd—even oscillation in time, i.e., with a
frequency differing from the Nyquist frequency w/Ar by only the small
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shift 6w = 27/160. To understand this, we observe that the dispersion rela-
tion for this trapezoidal rule scheme is 2/wpAt = cot wA1/2 = tan (z/2 —
wAt/2), yielding a mode frequency w = w/At — 4/w,At% so that the fre-
quency shift is dw = 4/wpAr® = 0.04 leading to a period of 157, Similar
behavior was observed for At =250. - = -

When the difference scheme of Eq. (1) is employed, the odd-even oscilla-
‘tions (aliased plasma wave) are observed to damp out rapidly, with
Yobe = —0.07. This compares well with the predicted damping factor
Yered = —0.069. Similar damping is obtained when “stiffly stable™® schemes
such as that of Eq. (2) are employed. This test problem serves to verify that
the implicit equations are solved correctly. :

As a first model problem, we consider the electron—electron two-stream
instability arising from the relative motion of two cold beams of infinite
spatial extent. The first run. made, “EE13,” was a benchmark, using the
conventional electrostatic leapfrog simulation algorithm and a small time-
step, Ar = 0.25 with wy(total) = 1.0. For this run, a grid of 32 cells was
employed, and 128 particles were used to represent each beam. A spatial
filter retaining only the longest-wavelength field mode was employed. Fig-

-~ Mre.1i5 2 plot-of the*thermal™ (kinetic-drift) energy of one beam as a func-
tion of time for this run; the analytically predictéd growth rate for the pa-
rameters chosen, normalized to the plasma frequency, is Yered = 0.0196,
with a corresponding ten-folding time for field quantities of 117.5. For in-
terpretation of the figure, this number must be divided by 2 since energies
exponentiate at twice the rate of field quantities, and so finally we expect
the thermal energy to grow by a decade each 58.75 time units. As can be
seen in the figure, the observed decade time is quite close to this predicted
value. _

For comparison with the above run, another (“EE14") was made using
the BAAL testbed code. This time-step, At = 2.5, was ten times as large as
that of the benchmark, and was large cnough that had it been used in an
explicit code a numerical instability would have resulted. The time-centered
trapezoidal rule versien of the model algorithm of this section was em-
ployed. Thus, there was no damping of the aliased plasma oscillations at
the Nyquist frequency (these would not be visible in a field energy plot
anyhow, since only the square of the electric field enters into that diagnos-

" tic). The spatial Fourier filtering in this run was applied to p and ¥. The
beam thermal energy history of this run is shown in Figure 2. The instabil-
ity is visible at an earlier time in the BAAL simulation; presumably this is
due to a larger initial level of excitation of the unstable mode. Once visible
growth begins, it is clear that the growth rates in this run and the previous
run are very nearly equal; whilé the saturation levels also agree closely, this
is not a strong check since by the end of the run almost all of the directed
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FIGURE | Thermal energy versus time for benchmark e~e two-stream run EEL.

kinetic energy of the beams has been converted to thermal energy. For a
quantitative check of the growth rate, Figure 3 shows the history of the
modulus-squared of the lowest spatial mode density component of one
beam. From this figure, the decade time can be measured to be 58.3 £ 0.5
time units, in excellent agreement with the predicted value. Similar behav-
for of this instability has been observed using implicit moment methods.?
As a second model problem, we consider an ion-acoustic traveling wave,
with wpe = 1.0, A7 = 3.0 (run “IA05™}. For this run, the time-level biasing
of Eq. (1) was employed, as was a spatial filtering of ¢ which discarded all
but modes 1-4, and which filtered modes 3 and 4 rather heavily. Mode 2
was excited, there were 128 grid cells, the mass ratio m;/m. was 16, and
there were 2048 electrons and 512 ions. A “quiet start™ initial loading was
employed. The system length L was 164, the electron thermal velocity .
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FIGURE 2 Thermal energy versus time for BAAL two-stream run EEl4.

was (.25 (the ions were cold), the Debye length Ap was 0.25, and the wave
vector & was 0.25. The sound speed ¢ was 0.0625, and the wave frequency
w was 0.0156 leading to a period 7 of 402. The smoothed ion density as a
function of x at the beginning of the run, and that at time ¢ = 210 (slightly
more than half a wave period later), exhibit sinusoidal variation, the latter
being of smaller amplitude. One predicts that the left-hand peak should
have moved 210cs = 13.1 units during this period of 70 time-steps, and
measures a traveled distance of 13.2, slightly more than half a wavelength.
Thus, the phase velocity of the wave is essentially correct. The decay in
amplitude during this interval can be attributed to electron Landan damp-
ing, with a rate  given by ’

| v/ we| = (rme/[Brn(1 + MDY 1)'4, (18)
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‘ .w_hich yields v = —0.00243, émd this an amplitude | Ec21o| = éxp(;210y) X .

| E=o| = (0.6)(0.025) = 0.0150, guite close to the observed value of 0.0158.

That the agreement is this good is largely fortuitous; a history plot of the

modulus-squared of the ion charge density reveals a damping of this mode

with a rate difficult to measure but in rough (£20%) agreement with the

predicted value, out to times of order 350, the falloff being slower at later
-times. The additional damping associated with the time integration ‘scheme
“is negligible for this low frequency mode. At times after 250 or so, mode 4
comes up out of the noise and the clean sinusoidal structure observed in the
‘earlier snapshots disappears. The total energy is observed to diminish by
- about 1% over the course of the run (out to time 600). The bulk of this loss

appears in the electron thermal energy, mdlcatmg that the particle—pushmg
-scheme induces a small amount of anomalous coolmg
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V. SUMMARY AND PLANS FOR FURTHER STUDY

‘We have described a new method for solving the coupled particle and field
equations arising in an implicit particle-in-cell formulation of plasma simu-
lation. To date, the direct-implicit PIC approach has been verified in appli- .
cation to ion-acoustic oscillation and two-stream instability, with wpAf in
the range 2.5-4.0. Numerical stability and correct dispersion of the testbed
code have been verified for a cold simulation plasma up to wpAf = 25.

. We are delineating the limitations of implicit methods and learning how
to surmount them. For example, it is observed that an unphysical cooling”
of the electrons occurs when uncentered equations of motion are dsed. This
side effect is related to the damping of Jew frequency oscillations; both are
smaller inour schemes described above which have third-order damping,
than in lower-order algorithms.” Our analysis® provides guidance to design
algorithms which retain desirable dissipation of high-frequency oscillations’

“while minimizing these undesirable effects, 7

Our future plans include the modeling of warm two-stream instabilities
wherein the physically fastest-growing mode is weli resolved in the simula-
tion, and the verification of the correct behavior of a plasma expanding
into vacuum, We are considering simplifications to the algorithm in order
to facilitate extension to 2d and/or electromagnetic codes. Practical appli-

_cation of these methods to problems in inertial and magnetic confinement

fusion might then be made.

‘ Acknnwledgmenls.

1t is a pleasure to acknowledge valunble conversations with J, Denavit, R. J. Mason, D, Pot-
ter, V. Thomas, and D. 8. Kershaw. This collaboration was stimulated in part by a workshaop
conducted in 1980 at U, C, Berkeley organized by Professor C. K, Birdsall, who has encour-
aged our investipation of long-time-step methods in plasma simulation. This work was per-
formed under the muspices of the U.S. Department of Energy, by the Lawrence Livermore
Laboratory under Contract No, W-7405-Eng-48. During the early stages of this work, cne of

" us (A.F.) was supported at the U, C. Berkeley Electronics Research Laboratory under contract
No. DOE-ASN3-765FQ0034-DE-AT03-76ET53064. ’

ALEX FRIEDMAN, A. BRUCE LANGDON, and BRUCE L COHEN

Lawrence Livermore National Laboratory, University af California, Livermore, California 94550

Contributed by W. Kruer

(Received June 29, 1981)

€037 HL 235




References |

1. A. Bruce Langdon, J. Comput. Phys. 30, 202 (1979).

2. J. Denavit, *“Time Filtering Particle Simulations with wpeA? 3 1, UCRL-85097, to appear
in J. Comput. Phys.

3. ’R. J. Moson, “Implicit Moment Particle Simulation of Plagmas,"” 1o appear inn J. Comput,
Phys, : :

4. A. Fricdman, R. L. Ferch, R. N, Sudan and A. T, Drobot, Plasma Phys, 19, 1101 {1977);
A. Mankofsky, A. Friedman and R, N. Sudan, Plasma Phys, 23, 521(1981).

5. D O. Dickman, R. L. Morse and C. W. Nielson, Fhys, Fluids 12, 1708 (1969).

5. C.'F. Curtiss and 1. O. Hirschfelder, Proc. Nat. Acad. Sci. U. S. 38, 235 (1952).

7. N. A, Krall and A. W, Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York,-

1973), p. 390.

3. A. B. Langdon, A. Friedmun, and B, 1. Cohen, in preparation, B, I; Cohen, A. B, Lang-
don, and A. Friedman, in preparation. ‘

037-49



